
Computer Programming 1 Lab

2020-10-08

1

Outline
decision-making in C

repetition statements

Exercise3

2

decision-making in C

3

decision-making in C

Boolean data type

Two states (true or false)

Logical operators - AND(&&), OR(||), NOT(!)

4

decision-making in C

examples:

if((1+1 == 2) && (1+1 == 3)){ // returns false
 // This part will NOT be executed.
}

if((1+1 == 2) || (1+1 == 3)){ // returns true
 // This part will be executed.
}

if(!(1+1 == 3)){ // returns true
 // This part will be executed.
}

5

decision-making in C

what "else"

Can only be used with if() .

Executed when the previous if() does not execute.

6

decision-making in C

examples:

if(Letter == 'A'){
 // Do something
}
else if(Letter == 'B'){
 // Do something
}
else if(Letter == 'C'){
 // Do something
}
else{
 // Do something
}

7

decision-making in C

"switch" on

switch between cases

break; each cases

Use default as the last else

8

decision-making in C

examples:

switch(Letter){
 case 'A':
 // Do something
 break;
 case 'B':
 // Do something
 break;
 case 'C':
 // Do something
 break;
 default:
 // Do something
 break;
}

9

decision-making in C

"switch" Tips:

Don't forget to break.

10

example:

 switch(Letter){
 case 'A':
 printf("The letter is A.\n");
 case 'B':
 printf("The letter is B.\n");
 case 'C':
 printf("The letter is C.\n");
 default:
 printf("None of them above.\n");
 }

results:

darkknive@1091cp1:~$./a.out B
The letter is B.
The letter is C.
None of them above.
darkknive@1091cp1:~$

11

repetition statements

12

repetition statements

Introducing "for"

Usage: for(init; condition; increment){}

init part will be executed before for loop start.

condition part will be executed before each looped. Only when return value is true
will the next loop be triggered.

increment will be executed after each loop.

13

repetition statements

In conclution, this is how for loop works...

init ->
if(condition == true) -> execute { } -> increment ->
if(condition == true) -> execute { } -> increment ->
if(condition == true) -> execute { } -> increment ->
...
if(condition == false) -> leave for()

14

repetition statements

example:

for(int a = 0; a < 5; a++){
 printf("%d\n", a);
}

results:

darkknive@1091cp1:~$./a.out
0
1
2
3
4
darkknive@1091cp1:~$

15

repetition statements

"For" Pro Tips:

1. Declear an int and start with 0, set condition as index < N; and increment as
index++ . This for loop will run N times with index = 0, 1, 2, 3......N-2, N-1.

2. If you get a segmentation fault during runtime, it may because your for loop
messed up. For example, for(int index = N-1; index >= 0; index++) .

3. You may declare multiple variables in init part by using int a = 0, b = 0, ...; .
Please note that they should be the same data type.

16

repetition statements

do "while"

Usage: while(condition){statement(s)} .

While (condition == true), do statement(s), then do the whole loop again.

In conclution, this is how it works...

if(condition == true) -> execute { } ->
if(condition == true) -> execute { } ->
...
if(condition == false) -> leave while()

17

repetition statements

example:

int total = 100;
while(total != 0){
 printf("%d ", total);
 total /= 2;
}
printf("\n");

results

darkknive@1091cp1:~$./a.out
100 50 25 12 6 3 1
darkknive@1091cp1:~$

18

repetition statements

do "while"

Another form of while loop is do{statement(s)}while(condition);

Do statements first, then check condition.

Stops while (condition == false).

In conclution, this is how it works...

execute { } -> if(condition == true) ->
execute { } -> if(condition == true) ->
...
execute { } -> if(condition == false) -> leave while()

19

repetition statements

example:

int total = 100;
do{
 printf("%d ", total);
 total /= 2;
}
while(total != 0);
printf("\n");

results

darkknive@1091cp1:~$./a.out
100 50 25 12 6 3 1
darkknive@1091cp1:~$

20

repetition statements

"While" Pro Tips:

1. If your runtime is stucked, it is very possible that you have an infinite while loop.
For example, while(a > 1){printf("%d ", a);} . The value of a won't be
changed in the loop, so if you enters this while loop, it's gonna run FOREVER.

21

Notes:
Format your code!

control your input smartly with scanf().

Every argument has its reason of existence.

Think as a program.

22

Exercise3

23

https://oj.mozix.ebg.tw/contest/14/problem/1091CP1%20Exercise3

Any Question?
Course? Assignment? Exercise? TA?

24

