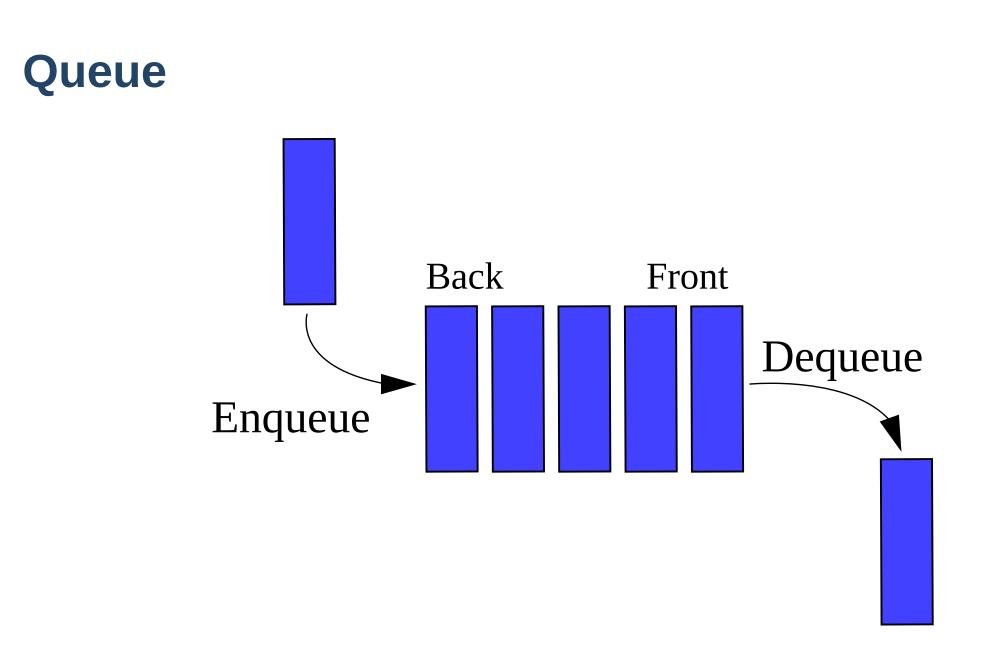
Computer Programming 1 Lab

2020-12-24

Chang, Chi-Hung

Outline

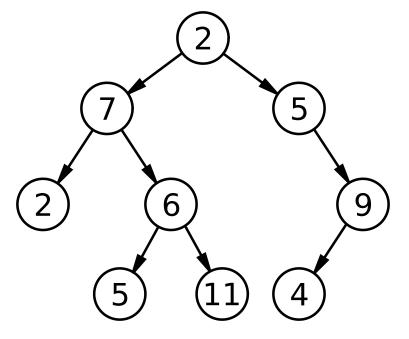
- Stack
- Queue
- Tree
- Exercise 12


Stack

- Last In, First Out (LIFO)
- Operations
 - \circ push
 - pop

Stack 3 1 3 2 2 2 1 1 4 push push push empty рор stack

Queue


- First In, First Out (FIFO)
- Operations
 - \circ enqueue
 - \circ dequeue

- Parent & child
- A parent can have more than one child
- All nodes are connected by pointers
- A node with no child is called leaf

Binary Tree

The most common tree that for any parents, there will be at most 2 children

Tree Structure

```
struct node{
    int value;
    struct node* left;
    struct node* right;
}
struct node* root = malloc(sizeof(struct node));
```

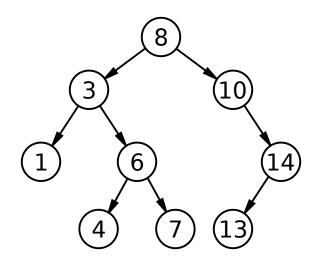
Insertion

Suppose A is a node that we are going to insert a new node B to its left child.

```
struct node* B = malloc(sizeof(struct node));
B->left = NULL;
B->right = NULL;
A->left = B;
```

Deletion

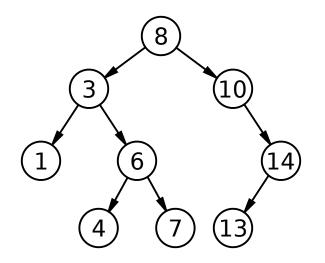
Suppose we want to remove A's left node.


```
free(A->left);
A->left = NULL;
```


Tree Order

Inorder

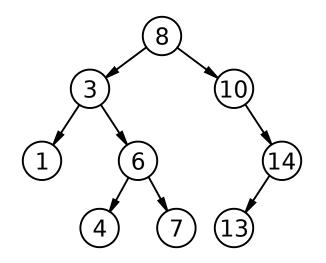
 $\textit{Order: left} \rightarrow \textit{root} \rightarrow \textit{right}$


1
ightarrow 3
ightarrow 4
ightarrow 6
ightarrow 7
ightarrow 8
ightarrow 10
ightarrow 13
ightarrow 14

Tree Order

Preorder

Order: $root \rightarrow left \rightarrow right$


8
ightarrow 3
ightarrow 1
ightarrow 6
ightarrow 4
ightarrow 7
ightarrow 10
ightarrow 14
ightarrow 13

Tree Order

Postorder

 $\textit{Order: left} \rightarrow \textit{right} \rightarrow \textit{root}$

1
ightarrow 4
ightarrow 7
ightarrow 6
ightarrow 3
ightarrow 13
ightarrow 14
ightarrow 10
ightarrow 8

Exercise 12

Give you the elements of a binary tree. The first element is the root node. When getting a new node (number), you should add the node into the binary tree. Please create the binary tree and print out the tree in **postorder**.

• Input

8 3 10 1 6 14 4 7 13

• Output

1 4 7 6 3 13 14 10 8

Any Question?